GIDDINGS & LEWIS

PiC Application Note

Document Number: AN000031

Topic: Application of the REGIST function.

There are several different types of registration applications, and different methods of registering to solve these application problems.

When looking at products which are bought off the shelf today almost all are packaged.

In many cases the product is actually packaged and wrapped more than once. For example, candy bars come with wrappers around each bar and all of the bars are either in a bag or a box. When shipping the individual bags or boxes to the store, the product is usually placed into a corrugated cardboard box.

Without considering how the product itself is made, consider how the packaging which holds the product is made and then placed around the product. The material used in most packages are plastic, paper, or cardboard. Many times the final product is enclosed in all of these types of packaging. All of these products begin as a raw product and are extruded into continuous sheets of material referred to as a web.

As the web material is moved and converted into the final packaging, the product will change shape and color many times before enclosing around the final product. There are many factors which influence the quality of the final product. By using an automated control system like the PiC900 it is possible to gather these factors together to allow production of a consistent quality product.

Web materials are sensitive to many controllable factors such as temperature, humidity, tension, and pressure. Since these elements can not always be perfectly controlled, variations are created which may need to be compensated for. One form of compensation is registration.

Some of the industries where registration is applied include:

1 - Web Converting

a) Elastic web - Polys and Plastics

b) Non-elastic web - Paper, Cardboard, and Steel

c) Sheeters- Cut to print

d) Die Cutters - Intermittent and continuous material feed

e) Printing - Print to print, Print to cut, Glue to print

2 - Packaging

a) In line - Vertical, and Horizontal form, fill, and seal.

b) Pick and place conveyors

c) Smart conveyors

d) Labeling machines

e) Bottling equipment

f) Cartoners

g) Case packers

i) Wrappers

These diverse industries require different types of registration techniques. Some examples of the different registration variations include:

1 - Clear lane registration

2 - Print registration

3 - Product registration

Clear lane registration and print registration have many similarities. Both typically use length as the component that is important to registration.

Clear lane registration is the most common type of registration used in industry. A lane of the material is reserved solely for registration purposes. The only marks which will trigger the fast input will be the registration marks. These marks are used throughout the different industries as a method of registering the products. A registration mark may be printed on a web of material along with other printing. Later, as the web of material is divided into individual pieces the mark will be used again. At this stage it may be trimmed and discarded, or it may be used again, as the material is used to make the final product. The marks are often hidden in folds of the product, or made to look like they belong by blending them into the product.

Print registration is less common than clear lane registration. Print registration involves picking out a distinct distance between marks which is unique. Print registration is used when it is not practical to have a clear lane.

Note: When using Print Registration the value entered at LGTH is not the same as the value entered at DIST.

Product registration uses cycle position registration. The important relationship is the position of the product in the cycle. Product registration can occur synchronously or asynchronously. In synchronous product registration products typically flow continuously through the process. Registration will recognize and calculate small adjustments required to move each product to the correct position. Asynchronous applications may require the axis to sit and wait for the product to pass the sensor then initiate a move to start knowing the position the product was at when it passed the sensor.

To successfully accommodate the many different registration variations the PiC900 utilizes length registration. It is also possible to use the PiC900 to do cycle position registration.

Length registration examples are covered in the following examples. The standard registration function block is shown below.

The Registration Function

[image: image1.bmp]Inputs:

EN(BOOL)-Enable execution

AXIS (USINT) - Identifies the axis

registration will be applied to.

DIST (UDINT) - distance between

registration marks that identifies the second

mark as a good mark.

TOLR (UDINT) - error allowed to exist

between two marks when compared to

the value entered at the DIST input.

IGNR(UDINT) - The distance after a

recognized mark for which all fast inputs

will be ignored as though they had never

occurred.

LGTH(UDINT) - the value used to calculate

the slave correction amount. Typically

LGTH
and DIST have the same value.

DIM(DINT) - The value to be assigned to

the position at which a Good mark occurs.

Outputs:
OK(BOOL) - Indicates the values at the

inputs were passed from the ladder to the

servo functions being processed every

servo interrupt.
When using this function the EN boolean should always be called for only one scan. After registration is initialized the servo software automatically processes each fast input. REGIST does not need to be enabled again unless one of the input values is to be changed.

Registration can be run on both digitizing axis and closed loop axes. Registration can be run while using any servo move function. Axes will make corrections only when they are running any RATIO function.

The axis which registration is to be run on must be directly related to the event being registered. As an example, if the error being detected were on a web of material, an axis which is in constant contact with the material would be used as the registration axis.

A registration mark is input to the PiC900 by connecting a photoeye to the fast input on an encoder, resolver, or servo interface module. These registration marks are recognized by the software as good, bad, or ignored (not recognized) marks. The value in DIST determines the distance between marks which is considered good. By adding and subtracting TOLR from DIST a target range is created which the mark must occur in to be recognized as a good mark. A mark can be ignored if it occurs in the ignore zone which begins at any recognized mark and ends after the distance entered in IGNR. A mark is bad if it occurs outside of the “good tolerance band” and is not ignored. A good mark and a bad mark are recognized marks, ignored marks are not recognized. If a mark is not recognized by the software the starting point for DIST , TOLR, and IGNR measurements are not reset. The starting points are reset for only good or bad marks.

When a good mark is detected a correction value is calculated based on the value entered at the LGTH input. The distance since the last good mark is divided by the value input at LGTH. The remainder is the correction amount. The correction amount is limited not to exceed +/-1/2(LGTH).

There are several functions which are used to support the REGIST function. STATUSSV returns the state of the bits being used by the REGIST function. READ_SV is used to get information from the servo software about what is happening to registration. WRITE_SV is used to change the way registration works. M_RGSTAT combines the most useful READ_SV and STATUSSV functions for easy access. Some of the useful READ_SV/WRITE_SV functions are listed in table 1. For an explanation of these functions see the “PiCPro, Function/Function Block Reference Guide”.

TABLE 1: READ_SV/WRITE_SV variables

Variable

Number
Description

9
Fast input position (hardware)

10
Registration/referencing position change

11
Consecutive bad marks

13
Slave offset incremental

14
Master offset incremental

15
Slave offset absolute

16
Master offset absolute

17
Slave offset filter

18
Master offset filter

19
Fast input direction

20
Fast input distance

22
Fast input position (hardware)

23
Position(software) of axis 1 with fast input on axis 2.

24
Registration switch

The block flow diagram shows what events occur in the servo software when a mark, (fast input), occurs. Try to follow the flow of the 3 possible paths and see what happens when a mark is ignored, (path 1), a mark is bad, (path 2), or a mark is good, (path 3).

Some Examples of using the Registration function. The examples progress through different scenarios to show the affect of using the various features offered by the REGIST function.

In these examples a mark can be recognized in several ways as shown in the key.

Case 1:

The values a user might enter for Registration are given below.

DIST = 0

TOLR = 100

IGNR = 0

LGTH = 900

DIM = 0

In this example all marks are good marks because the DIST and IGNR = 0. Any occurrence of a mark will cause the axis position to be set to 0, (the value of DIM).

900
 150
 900

G1 - In these examples the first mark is always considered to be a good mark as an entrant condition.

G2 - Recognized as a good mark.

A. Set actual position to zero at mark.

B. Set command position to zero at mark.

C. Calculate correction value based on LGTH and Distance since last good mark.

 MOD[900/900] = 0

D. Save mark position for next LGTH calculation.

E. Save mark position for next DIST calculation.

F. Set status bits, (use STATUSSV in the LDO to see status bits.)

FAST IN OCCURRED
 1

FAST INPUT
 1

GOOD MARK
 1

BAD MARK

 0

DIST + TOLR

 0

FAST IN RISING

 ?

G3 - Recognized as a good mark.

A. Set actual position to zero at mark.

B. Set command position to zero at mark.

C. Calculate correction value based on LGTH and Distance since last good mark.

 MOD[150/900] = 150

D. Save mark position for next LGTH calculation.

E. Save mark position for next DIST calculation.

F. Set status bits,

FAST IN OCCURRED
 1

FAST INPUT
 1

GOOD MARK
 1

BAD MARK

 0

DIST + TOLR

 0

FAST IN RISING

 ?

G4 - Recognized as a good mark.

A. Set actual position to zero at mark.

B. Set command position to zero at mark.

C. Calculate correction value based on LGTH and Distance since last good mark.

 MOD[900/900] = 0

D. Save mark position for next LGTH calculation.

E. Save mark position for next DIST calculation.

F. Set status bits,

FAST IN OCCURRED
 1

FAST INPUT
 1

GOOD MARK
 1

BAD MARK

 0

DIST + TOLR

 0

FAST IN RISING

 ?

Case 2:

In example 2 the DIST and IGNR are not zero. The goal of example 2 is to show how a mark can be ignored, and what correction will result when a good mark is encountered.

This example incorporates the use of the measuring bar. A measuring bar symbolizes the different regions for DIST, IGNR, and TOLR. A new measuring bar is started each time a Good or Bad mark occurs.

DIST = 1000

TOLR = 100

IGNR = 200

LGTH = 1000

DIM = 0

1000

 1000

G1 - entrant condition

G2 - Recognized as a good mark. The mark is considered to be a good mark because the mark fell within the tolerance band shown by the ruler which started at the last recognized mark.

A. Set actual position to zero at mark.

B. Set command position to zero at mark.

C. Calculate correction value based on LGTH and Distance since last good mark.

 MOD[1000/1000] = 0

D. Save mark position for next LGTH calculation.

E. Save mark position for next DIST calculation.

F. Set status bits,

FAST IN OCCURRED
 1

FAST INPUT
 1

GOOD MARK
 1

BAD MARK

 0

DIST + TOLR

 0

FAST IN RISING

 ?

X1 - Mark is in ignore zone.

A. Set status bits,

FAST IN OCCURRED
 1

FAST INPUT
 1

GOOD MARK
 0

BAD MARK

 0

DIST + TOLR

 0

FAST IN RISING

 ?

G3 - Recognized as a good mark.

A. Set actual position to zero at mark.

B. Set command position to zero at mark.

C. Calculate correction value based on LGTH and Distance since last good mark.

 MOD[1090/1000] = 90

D. Save mark position for next LGTH calculation.

E. Save mark position for next DIST calculation.

F. Set status bits,

FAST IN OCCURRED
 1

FAST INPUT
 1

GOOD MARK
 1

BAD MARK

 0

DIST + TOLR

 0

FAST IN RISING

 ?

Case 3:

Example 3 differs from example 2 in that the next mark after an ignored mark is bad. This case shows how registration will reset itself and what correction will be calculated, to properly align the axis motion to the product.

DIST = 1000

TOLR = 80

IGNR = 200

LGTH = 1000

DIM = 0

 1000

 1000

1000

G1 - entrant condition

G2 - Recognized as a good mark.

A. Set actual position to zero at mark.

B. Set command position to zero at mark.

C. Calculate correction value based on LGTH and Distance since last good mark.

 MOD[1000/1000] = 0

D. Save mark position for next LGTH calculation.

E. Save mark position for next DIST calculation.

F. Set status bits,

FAST IN OCCURRED
 1

FAST INPUT
 1

GOOD MARK
 1

BAD MARK

 0

DIST + TOLR

 0

FAST IN RISING

 ?

X1 - Mark is in ignore zone.

A. Set status bits,

FAST IN OCCURRED
 1

FAST INPUT
 1

GOOD MARK
 0

BAD MARK

 0

DIST + TOLR

 0

FAST IN RISING

 ?

D1 - Distance plus tolerance has been exceeded.

A. Set status bits,

FAST IN OCCURRED
 0

FAST INPUT
 0

GOOD MARK
 0

BAD MARK

 0

DIST + TOLR

 1

FAST IN RISING

 0

B1 - Recognized as a bad mark.

A. Save mark position for next DIST calculation. Start a new measuring bar.

F. Set status bits,

FAST IN OCCURRED
 1

FAST INPUT
 1

GOOD MARK
 0

BAD MARK

 1

DIST + TOLR

 0

FAST IN RISING

 ?

G3 - Recognized as a good mark.

A. Set actual position to zero at mark.

B. Set command position to zero at mark.

C. Calculate correction value based on LGTH and Distance since last good mark.

 MOD[2090/1000] = 90

D. Save mark position for next LGTH calculation.

E. Save mark position for next DIST calculation.

F. Set status bits,

FAST IN OCCURRED
 1

FAST INPUT
 1

GOOD MARK
 1

BAD MARK

 0

DIST + TOLR

 0

FAST IN RISING

 ?

Case 4:

Case 4 is showing what will happen when a bad mark occurs. The correction is calculated at the next good mark . Synchronization is based on the distance since the last recognized mark.

DIST = 1000

TOLR = 50

IGNR = 50

LGTH = 1000

DIM = 0

 1000

 1000

G1 - entrant condition

G2 - Recognized as a good mark.

A. Set actual position to zero at mark.

B. Set command position to zero at mark.

C. Calculate correction value based on LGTH and Distance since last good mark.

 MOD[1000/1000] = 0

D. Save mark position for next LGTH calculation.

E. Save mark position for next DIST calculation.

F. Set status bits,

FAST IN OCCURRED
 1

FAST INPUT
 1

GOOD MARK
 1

BAD MARK

 0

DIST + TOLR

 0

FAST IN RISING

 ?

B1 - Recognized as a bad mark.

A. Save mark position for next DIST calculation.

F. Set status bits,

NOTE: The ruler is reset on both good and bad marks.

FAST IN OCCURRED
 1

FAST INPUT
 1

GOOD MARK
 0

BAD MARK

 1

DIST + TOLR

 0

FAST IN RISING

 ?

G3 - Recognized as a good mark.

A. Set actual position to zero at mark.

B. Set command position to zero at mark.

C. Calculate correction value based on LGTH and Distance since last good mark.

 MOD[1090/1000] = 90

D. Save mark position for next LGTH calculation.

E. Save mark position for next DIST calculation.

F. Set status bits,

FAST IN OCCURRED
 1

FAST INPUT
 1

GOOD MARK
 1

BAD MARK

 0

DIST + TOLR

 0

FAST IN RISING

 ?

Case 5:

In case 5 two consecutive bad marks occur. Registration recovery and correction calculation are shown. In this case a bad mark may have resulted from a false mark, or product splice.

DIST = 1000

TOLR = 50

IGNR = 50

LGTH = 1000

DIM = 0

 1000

 910

1000

G1 - entrant condition

G2 - Recognized as a good mark.

A. Set actual position to zero at mark.

B. Set command position to zero at mark.

C. Calculate correction value based on LGTH and Distance since last good mark.

 MOD[1000/1000] = 0

D. Save mark position for next LGTH calculation.

E. Save mark position for next DIST calculation.

F. Set status bits,

FAST IN OCCURRED
 1

FAST INPUT
 1

GOOD MARK
 1

BAD MARK

 0

DIST + TOLR

 0

FAST IN RISING

 ?

B1 - Recognized as a bad mark.

A. Save mark position for next DIST calculation.

F. Set status bits,

FAST IN OCCURRED
 1

FAST INPUT
 1

GOOD MARK
 0

BAD MARK

 1

DIST + TOLR

 0

FAST IN RISING

 ?

B2 - Recognized as a bad mark.

A. Save mark position for next DIST calculation.

F. Set status bits,

FAST IN OCCURRED
 1

FAST INPUT
 1

GOOD MARK
 0

BAD MARK

 1

DIST + TOLR

 0

FAST IN RISING

 ?

G3 - Recognized as a good mark.

A. Set actual position to zero at mark.

B. Set command position to zero at mark.

C. Calculate correction value based on LGTH and Distance since last good mark.

 MOD[2000/1000] = 0

D. Save mark position for next LGTH calculation.

E. Save mark position for next DIST calculation.

F. Set status bits,

FAST IN OCCURRED
 1

FAST INPUT
 1

GOOD MARK
 1

BAD MARK

 0

DIST + TOLR

 0

FAST IN RISING

 ?

Case 6:

A one time slip or a splice of material might be the cause of the extra mark in example 6. Use of the ignore zone is demonstrated.

DIST = 1000

TOLR = 100

IGNR = 900

LGTH = 1000

DIM = 0

 1000

 500

 550

G1 - entrant condition

G2 - Recognized as a good mark.

A. Set actual position to zero at mark.

B. Set command position to zero at mark.

C. Calculate correction value based on LGTH and Distance since last good mark.

 MOD[1000/1000] = 0

D. Save mark position for next LGTH calculation.

E. Save mark position for next DIST calculation.

F. Set status bits,

FAST IN OCCURRED
 1

FAST INPUT
 1

GOOD MARK
 1

BAD MARK

 0

DIST + TOLR

 0

FAST IN RISING

 ?

X1 - Mark is in ignore zone.

A. Set status bits,

FAST IN OCCURRED
 1

FAST INPUT
 1

GOOD MARK
 0

BAD MARK

 0

DIST + TOLR

 0

FAST IN RISING

 ?

G3 - Recognized as a good mark.

A. Set actual position to zero at mark.

B. Set command position to zero at mark.

C. Calculate correction value based on LGTH and Distance since last good mark.

 MOD[1000/1050] = 50

D. Save mark position for next LGTH calculation.

E. Save mark position for next DIST calculation.

F. Set status bits,

FAST IN OCCURRED
 1

FAST INPUT
 1

GOOD MARK
 1

BAD MARK

 0

DIST + TOLR

 0

FAST IN RISING

 ?

Case 7:

In example 7 a repeating cycle is shown with multiple marks per cycle. The ignore zone is attempted to be used to hold register. A shifted register point is the probable result. This will result if the desired mark falls out of the tolerance zone or into the ignore zone.

DIST = 1000

TOLR = 100

IGNR = 900

LGTH = 1000

DIM = 0

 1000

 890

 1000

1000

 100

200
100

 110 100

200 100

 200

G1 - entrant condition

X1-6 - Marks are in ignore zone.

A. Set status bits,

FAST IN OCCURRED
 1

FAST INPUT
 1

GOOD MARK
 0

BAD MARK

 0

DIST + TOLR

 0

FAST IN RISING

 ?

G2 - Recognized as a good mark.

A. Set actual position to zero at mark.

B. Set command position to zero at mark.

C. Calculate correction value based on LGTH and Distance since last good mark.

 MOD[1000/1000] = 0

D. Save mark position for next LGTH calculation.

E. Save mark position for next DIST calculation.

F. Set status bits,

FAST IN OCCURRED
 1

FAST INPUT
 1

GOOD MARK
 1

BAD MARK

 0

DIST + TOLR

 0

FAST IN RISING

 ?

X7-13 - Marks are in ignore zone.

A. Set status bits,

FAST IN OCCURRED
 1

FAST INPUT
 1

GOOD MARK
 0

BAD MARK

 0

DIST + TOLR

 0

FAST IN RISING

 ?

G3 - Recognized as a good mark.

Note: At this point registration has shifted on the product. This is a problem which can occur when there are multiple fast inputs per product. Case 8 shows how to avoid this situation where the registration point can shift.

A. Set actual position to zero at mark.

B. Set command position to zero at mark.

C. Calculate correction value based on LGTH and Distance since last good mark.

 MOD[990/1000] = 990

Correction is limited to 1/2 the value entered in LGTH. The servo software will automatically subtract LGTH to get a value which will make the correction move the product the shortest distance to align the product.

 990 - 1000 = -10

D. Save mark position for next LGTH calculation.

E. Save mark position for next DIST calculation.

F. Set status bits,

FAST IN OCCURRED
 1

FAST INPUT
 1

GOOD MARK
 1

BAD MARK

 0

DIST + TOLR

 0

FAST IN RISING

 ?

X14-18 - Marks are in ignore zone.

A. Set status bits,

FAST IN OCCURRED
 1

FAST INPUT
 1

GOOD MARK
 0

BAD MARK

 0

DIST + TOLR

 0

FAST IN RISING

 ?

G4 - Recognized as a good mark.

Note: The registration point has shifted!

A. Set actual position to zero at mark.

B. Set command position to zero at mark.

C. Calculate correction value based on LGTH and Distance since last good mark.

 MOD[1000/1000] = 0

D. Save mark position for next LGTH calculation.

E. Save mark position for next DIST calculation.

F. Set status bits,

FAST IN OCCURRED
 1

FAST INPUT
 1

GOOD MARK
 1

BAD MARK

 0

DIST + TOLR

 0

FAST IN RISING

 ?

Case 8:

The correct solution of case 7 would be to find a distinguishable distance between two of the marks in the cycle to find a good mark. This is accomplished using the distance and tolerance inputs set up to trigger within the product cycle. This is referred to pattern or print registration. Looking at the pattern there are 2 distinguishable distances which could be selected. The 200 units before the register mark, or the 100 after the register mark. For this example the distance of 100 will be distinguished for registration. Therefore DIST will be set to 100 and the tolerance will be reduced to not include the other regions.

DIST = 100

TOLR = 10

IGNR = 0

LGTH = 1000

DIM = 0

Note: The drawing below is the same as in case 7.

 1000

 920

 1000

 100

200
100

 120 100

200

G1 - Recognized as a good mark.

A. Set actual position to zero at mark.

B. Set command position to zero at mark.

C. Calculate correction value based on LGTH and Distance since last good mark.

 MOD[1000/1000] = 0

D. Save mark position for next LGTH calculation.

E. Save mark position for next DIST calculation.

F. Set status bits,

FAST IN OCCURRED
 1

FAST INPUT
 1

GOOD MARK
 1

BAD MARK

 0

DIST + TOLR

 0

FAST IN RISING

 ?

B1-6 - Recognized as a bad marks.

A. Save mark position for next DIST calculation.

F. Set status bits,

FAST IN OCCURRED
 1

FAST INPUT
 1

GOOD MARK
 0

BAD MARK

 1

DIST + TOLR

 0

FAST IN RISING

 ?

G2 - Recognized as a good mark.

A. Set actual position to zero at mark.

B. Set command position to zero at mark.

C. Calculate correction value based on LGTH and Distance since last good mark.

 MOD[1000/1000] = 0

D. Save mark position for next LGTH calculation.

E. Save mark position for next DIST calculation.

F. Set status bits,

FAST IN OCCURRED
 1

FAST INPUT
 1

GOOD MARK
 1

BAD MARK

 0

DIST + TOLR

 0

FAST IN RISING

 ?

B7-12 - Recognized as a bad marks.

A. Save mark position for next DIST calculation.

F. Set status bits,

FAST IN OCCURRED
 1

FAST INPUT
 1

GOOD MARK
 0

BAD MARK

 1

DIST + TOLR

 0

FAST IN RISING

 ?

G3 - Recognized as a good mark.

A. Set actual position to zero at mark.

B. Set command position to zero at mark.

C. Calculate correction value based on LGTH and Distance since last good mark.

 MOD[920/1000] = 920

Since correction is limited to 1/2 LGTH subtract LGTH

 920 - 1000 = -80

D. Save mark position for next LGTH calculation.

E. Save mark position for next DIST calculation.

F. Set status bits,

FAST IN OCCURRED
 1

FAST INPUT
 1

GOOD MARK
 1

BAD MARK

 0

DIST + TOLR

 0

FAST IN RISING

 ?

Things to remember.

1. The minimum time between marks must be at least 8 times the interrupt rate. Example: 1ms X 8 = 8ms minimum time between fast inputs.

Note: Use the Write_SV variable 25 to reduce this time to 2 ms.

2. The turn on time of the mark sensor should be as fast and repeatable as possible so that the marks are detected consistently and are not missed at high speeds.

3. A maximum of 50 micro-seconds may delay exists on the hardware for the fast input depending on the input device being used. The mark sensor must be on for at least 50 micro-seconds to guarantee the input will turn on.

4. Photo-eyes can be either or both light and dark sensing. Be sure which edge is the leading edge.

5. The first time registration is called the correction value is placed in READ_SV variable 10. The programmer must negate this value and do a WRITE_SV to align the axis if alignment is important at startup.

6. Registration does not cause any motion!!! Correction causes motion and is only applied to SLAVE axis. See READ_SV variables 17 and 18, (Slave and Master Correction/Offset filters), if correction seems to rough on the mechanics of the machine.

7. The master axis must be moving in order for the slave to make any correction.

8. If an offset filter is used the slave must have an command delta in order for the slave to move, not including the delta from correction.

9. WRITE_SV variable 24 can be used to turn off master and slave correction, and to turn off setting of dimension to the mark.

10. The LGTH and the machine cycle are related, and a relationship must be maintained

relative to the master slave relationship. (Sooner or later everyone makes this mistake.)

To avoid this mistake: LGTH = MDST(INTEGER) if master registration, or SDST(INTEGER) if slave registration. If a profile is used MDST = sum of master segments, SDST = sum of slave segments.

11. If another move type which uses the fast input is called registration will be turned off. These moves include, FAST_REF, MEASURE, and FAST_QUE. Tasks also cannot be run which use the same fast input as registration. Use the STATUSSV function to access the hardware state in tasks if necessary.

12. In most applications the rollover value should be same as the value input for LGTH.

Revision History

Date: 14-May-97

Author: Don Seichter

Changes: Original

Date: [For each revision, enter the date revised,]

Author: [the name of the person revising the document,]

Changes: [and indicate what changes were made.]

REGIST

EN

AXIS

DIST

TOLR

IGNR

LGTH

DIM

OK

Bad mark=1

Good mark =0

Inc Bad count

Mark occurs

Is the mark within the

DIST +/- TOLR?

Adjust actual position

Adjust command position

Calculate correction

Save new LGTH calc. point

Bad mark = 0

Good mark =1

Is the mark in the IGNR region?

No

Yes

Save new DIST calculation starting point

Yes

No

STATUSSV

Fast input on=1

Fast occurred =1

Key

	G - Recognized as a good mark

	B - Recognized as a Bad mark	

	X - Acknowledged that the fast input occurred but does not affect registration.

	D - Mark did not occur. No mark, or late mark.

Represents the expected distance (value entered in DIST)

Represents the tolerance (Value entered in TOLR)

Represents the ignore region (Value entered in IGNR)

Represents distance the axis moves between Fast inputs

0

0

0

0

G3

G4

G2

G1

Position set to the value in DIM= 0.

90

0

0

G1

G2

0

G3

X1

90

0

0

G1

G2

0

X1

B1

G3

DIST + TOLR Exceeded

 D1	

90

0

0

G1

G2

0

B1

G3

90

0

0

G1

G2

0

B1

B2

G3

0

0

G1

G2

0

X1

G3

0

0

G1

G2

X13

G4

G3

X18

X19

X20

X21

X22

X7

X8

X9

X10

X11

X12

X14

X15

X16

X17

X18

X5

X6

X4

X3

X2

X1

0

0

0

B6

B1

B2

B3

B4

B5

G3

B7

B9

B10

B11

B17

B16

B15

B14

B13

B12

B8

G1

G2

PAGE
1
AN000031.DOC
7/20/99

